52 research outputs found

    Formation and Evolution of Primordial Black Hole Binaries in the Early Universe

    Full text link
    The abundance of primordial black holes (PBHs) in the mass range 0.1−103M⊙0.1 - 10^3 M_\odot can potentially be tested by gravitational wave observations due to the large merger rate of PBH binaries formed in the early universe. To put the estimates of the latter on a firmer footing, we first derive analytical PBH merger rate for general PBH mass functions while imposing a minimal initial comoving distance between the binary and the PBH nearest to it, in order to pick only initial configurations where the binary would not get disrupted. We then study the formation and evolution of PBH binaries before recombination by performing N-body simulations. We find that the analytical estimate based on the tidally perturbed 2-body system strongly overestimates the present merger rate when PBHs comprise all dark matter, as most initial binaries are disrupted by the surrounding PBHs. This is mostly due to the formation of compact N-body systems at matter-radiation equality. However, if PBHs make up a small fraction of the dark matter, fPBH≲10%f_{\rm PBH} \lesssim 10\%, these estimates become more reliable. In that case, the merger rate observed by LIGO imposes the strongest constraint on the PBH abundance in the mass range 2−160M⊙2 - 160 M_\odot. Finally, we argue that, even if most initial PBH binaries are perturbed, the present BH-BH merger rate of binaries formed in the early universe is larger than O(10) Gpc−3yr−1 fPBH3\mathcal{O}(10)\,{\rm Gpc}^{-3} {\rm yr}^{-1}\, f_{\rm PBH}^3Comment: 32pages, 12 figures, typos corrected, references added, figures updated, matches version published in JCA

    Evidence for Dark Matter Self-Interactions via Collisionless Shocks in Cluster Mergers

    Get PDF
    While dark matter self-interactions may solve several problems with structure formation, so far only the effects of two-body scatterings of dark matter particles have been considered. We show that, if a subdominant component of dark matter is charged under an unbroken U(1)U(1) gauge group, collective dark plasma effects need to be taken into account to understand its dynamics. Plasma instabilities can lead to collisionless dark matter shocks in galaxy cluster mergers which might have been already observed in the Abell 3827 and 520 clusters. As a concrete model we propose a thermally produced dark pair plasma of vectorlike fermions. In this scenario the interacting dark matter component is expected to be separated from the stars and the non-interacting dark matter halos in cluster collisions. In addition, the missing satellite problem is softened, while constraints from all other astrophysical and cosmological observations are avoided.Comment: Matches the version to be published in Physics Letters

    Equilibrium ion distribution in the presence of clearing electrodes and its influence on electron dynamics

    Full text link
    Here we compute the ion distribution produced by an electron beam when ion-clearing electrodes are installed. This ion density is established as an equilibrium between gas ionization and ion clearing. The transverse ion distributions are shown to strongly peak in the beam's center, producing very nonlinear forces on the electron beam. We will analyze perturbations to the beam properties by these nonlinear fields. To obtain reasonable simulation speeds, we develop fast algorithms that take advantage of adiabatic invariants and scaling properties of Maxwell's equations and the Lorentz force. Our results are very relevant for high current Energy Recovery Linacs, where ions are produced relatively quickly, and where clearing gaps in the electron beam cannot easily be used for ion elimination. The examples in this paper therefore use parameters of the Cornell Energy Recovery Linac project. For simplicity we only consider the case of a circular electron beam of changing diameter. However, we parameterize this model to approximate non-round beams well. We find suitable places for clearing electrodes and compute the equilibrium ion density and its effect on electron-emittance growth and halo development. We find that it is not sufficient to place clearing electrodes only at the minimum of the electron beam potential where ions are accumulated

    Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter

    Full text link
    We study the standard model (SM) in its full perturbative validity range between ΛQCD\Lambda_QCD and the U(1)YU(1)_Y Landau pole, assuming that a yet unknown gravitational theory in the UV does not introduce additional particle thresholds, as suggested by the tiny cosmological constant and the absence of new stabilising physics at the EW scale. We find that, due to dimensional transmutation, the SM Higgs potential has a global minimum at 10^26 GeV, invalidating the SM as a phenomenologically acceptable model in this energy range. We show that extending the classically scale invariant SM with one complex singlet scalar S allows us to: (i) stabilise the SM Higgs potential; (ii) induce a scale in the singlet sector via dimensional transmutation that generates the negative SM Higgs mass term via the Higgs portal; (iii) provide a stable CP-odd singlet as the thermal relic dark matter due to CP-conservation of the scalar potential; (iv) provide a degree of freedom that can act as an inflaton in the form of the CP-even singlet. The logarithmic behaviour of dimensional transmutation allows one to accommodate the large hierarchy between the electroweak scale and the Landau pole, while understanding the latter requires a new non-perturbative view on the SM.Comment: 15 pages, 9 figures. Final version to be published in Physical Review

    Anomalous Higgs-boson coupling effects in HWW production at the LHC

    Full text link
    We study the LHC associated production of a Higgs boson and a W^+W^- vector-boson pair at 14 TeV, in the Standard Model and beyond. We consider different signatures corresponding to the cleanest H and W decay channels, and discuss the potential of the high-luminosity phase of the LHC. In particular, we investigate the sensitivity of the HWW production to possible anomalous Higgs couplings to vector bosons and fermions. Since the b-quark initiated partonic channel contributes significantly to this process, we find a moderate sensitivity to both the size and sign of an anomalous top-quark Yukawa coupling, because perturbative unitarity in the standard model implies a destructive interference in the b b-bar subprocess. We show that a combination of various signatures can reach a ~9 standard-deviation sensitivity in the presently allowed negative region of the top-Higgs coupling, if not previously excluded.Comment: 13 pages, 3 figure
    • …
    corecore